

Modeling Wine Quality Using Classification and Regression

> Mario Wijaya MGT 8803 November 28, 2017

Motivation

<u>Dataset</u>

Consists of

Solution

- White wine: 4898 samples
- Red wine: 1599 samples
- Variables:
 - Fixed acidity
 - Volatile acidity
 - Quality
 - GoodBad
 - Quality > 5: Class 1
 - Quality <=5: Class 0
 - etc
- Potential problem?
 - Class imbalance
 - Bias
 - High variance

- Oversampling underrepresented class
- Downsampling overrepresented class
- Overweight underrepresented classes in loss function
- Normalization for classification and regression (SGD)

Source of Dataset: UCI (https://archive.ics.uci.edu/ml/datasets/Wine+Quality)

General Strategy

Tools: Python3 with Scikit-learn package, Matplotlib & Seaborn (Plot & Visualization)

Models & Challenges

Regression

- Multi linear regression
- Stochastic Gradient Descent
- Ridge Regression
- Lasso Regression
- Decision Tree Regression

Classification

- SVM
- K-Nearest Neighbor
- Decision Tree Classification
- Used PCA to do dimension reduction
 - 11 variables mapped to 2 dimension

Challenges

- Find optimal parameters
 - SVM: C, gamma
 - Etc
- Find model that can be generalized
- Prevent overfitting
 - K-fold cross validation

Quick Lecture

Stochastic Gradient Descent

The standard gradient descent algorithm updates the parameters heta of the objective J(heta) as,

 $\theta = \theta - \alpha \nabla_{\theta} E[J(\theta)]$

where the expectation in the above equation is approximated by evaluating the cost and gradient over the full training set. Stochastic Gradient Descent (SGD) simply does away with the expectation in the update and computes the gradient of the parameters using only a single or a few training examples. The new update is given by,

$$heta= heta-lpha
abla_ heta J(heta;x^{(i)},y^{(i)})$$

Regression

- Ridge Regression

 L-2 penalty
- Lasso
 - L-1 Penalty
- Decision Tree

$$\left\|x
ight\|_{p}=\left(\sum_{i\in\mathbb{N}}\left|x_{i}
ight|^{p}
ight)^{1/p}$$
 :

Classification - KNN

Regression

Regression

- Correlation Matrix
 - Look at possible high correlation feature

Regression

Regression

- Correlation Matrix
 - Look at possible high correlation feature
- Multiple Linear Regression
 - Y = X1beta1 + X2beta2 +...
 XnbetaN + E
 - R^2 = 0.325
 - Pretty bad!
- SGD R^2: 0.323
- Lasso and Ridge equally bad
- Used interaction terms and remove high p-value -> bad
- Forward selection -> not good either

OLS Regression Results							
Dep. Variable:	quality		R-squared:			0.325	
Model:	OLS Least Squares Thu, 23 Nov 2017 14:08:44 6268		Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:			0.324 274.0 0.00 -6677.9 1.338e+04	
Method:							
Date:							
Time:							
No. Observations:							
Df Residuals:		6256	BIC:			1.346e+04	
Df Model:		11					
Covariance Type:	nonrobust						
	coef	std	err	t	P> t	[0.025	0.975]
Intercept	49.9334	10	.625	4.700	0.000	29.105	70.762
fixed acidity	0.0566	0	.014	4.014	0.000	0.029	0.084
volatile acidity	-1.2555	0	.068	-18.378	0.000	-1.389	-1.122
citric acid	-0.0784	0	.077	-1.021	0.307	-0.229	0.072
residual sugar	0.0376	0	.005	7.623	0.000	0.028	0.047
chlorides	-1.1647	0	. 283	-4.118	0.000	-1.719	-0.610
free sulfur dioxide	0.0053	0	.001	6.510	0.000	0.004	0.007
total sulfur dioxide	-0.0027	0	.000	-9.472	0.000	-0.003	-0.002
density	-48.4174	10	.867	-4.456	0.000	-69.720	-27.115
pH	0.2880	0	.091	3.151	0.002	0.109	0.467
sulphates	0.8255	0	.068	12.181	0.000	0.693	0.958
alcohol	0.2607	0	.015	17.448	0.000	0.231	0.290
Omnibus:	155	360	Dunh	in Watson:		2 002	
Prob(Omnibus):	100	. 300	Jana	un Bono (1P)	2.002		
Skour	0	071	Dang	(IR).	1 250 70		
Vuntocic:	-0	150	Cond	No.	1.960.05		
Kur (0515.	4		======			1.900+03	

Regression

Regression

- Correlation Matrix
 - Look at possible high correlation feature
- Multiple Linear Regression
 - Y = X1beta1 + X2beta2 +... XnbetaN + E
 - R^2 = 0.325
 - Pretty bad!
- SGD R^2: 0.323
- Lasso and Ridge equally bad
- Used interaction terms and remove high p-value -> bad
- Forward selection -> not good either

Classification - SVM

Classification

- Normalize data (0,1)
- Varies parameter of C and gamma
 - 10-fold cross validation
 - Find best model that gives lowest error rate or highest accuracy rate
- ~83% prediction accuracy but clearly linear kernel is better in this case from support vector drawn
- How do you draw 11 dimensions into 2 dimensions?

D PCA

Prediction Accuracy - Linear Kernel Varying C

SVM Classification c=1, gamma=0.001, kernel=linear

Classification - KNN

Classification

- Ad-hoc knowledge:
 - K = 1/sqrt(# of samples) = ~99
- Use 10-fold CV
 - Determine error rate
 - Use it to find best K
 - K = 40 -> K = 100
 - Not much different
- Higher K -> smoother curves
- Relatively good for classification
 - Easily overfitting
 - Careful!

-0.5

0.0

0.5

10

15

-1.5

-1.5

-1.0

Classification - Decision Tree

digraph Tree {

Classification

- Recursively find label
- Used Gini Index for splitting
 - Other methods: Information Gain (Entropy)
- 88% prediction accuracy
 - Also tried with testing data
- Need to set depth, otherwise we will have overfitting

node [shape=box, style="filled, rounded", color="black", fontname=helvetica]; edge [fontname=helvetica] ; 0 [label=<alcohol &le: 10.25
br/>gini = 0.48
samples = 7836
value = [3129, 4707]
br/>class = o>, fillcolor="#399de555"]: 1 [label=<volatile acidity &le: 0.275
br/>gini = 0.484
samples = 3960
value = [2332, 1628]
class = G>, fillcolor="#e581394d"] : 0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] : 2 [label=<volatile_acidity ≤ 0.227
br/>gini = 0.453
br/>samples = 1103
br/>value = [383, 720]
class = o>, fillcolor="#399de577"]; 1 -> 2 ; 3 [label=<density &le: 0.992
br/>gini = 0.376
samples = 558
br/>value = [140, 418]
class = o>, fillcolor="#399de5aa"] : $2 \rightarrow 3$: 4 [label=<chlorides ≤ 0.035
br/>gini = 0.426
samples = 13
br/>value = [9, 4]
class = 6>, fillcolor="#e581398e"]; 3 -> 4 : 5 [label=<gini = 0.0
samples = 2
value = [0, 2]
class = o>, fillcolor="#399de5ff"]; 4 -> 5 : 6 [label=<free sulfur dioxide &le: 18.0
br/>eini = 0.298
samples = 11
br/>value = [9, 2]
br/>class = G>, fillcolor="#e58139c6"] ; 4 -> 6 ; 7 [label=<total_sulfur_dioxide ≤ 68.0
br/>gini = 0.444
br/>samples = 3
br/>value = [1, 2]
br/>class = o>, fillcolor="#399de57f"]; 6 -> 7 : 8 [label=<gini = 0.0
samples = 1
value = [1, 0]
class = 6>, fillcolor="#e58139ff"]; 7 -> 8 ; 9 [label=<gini = 0.0
samples = 2
value = [0, 2]
class = o>, fillcolor="#399de5ff"]; 7 -> 9 : 10 [label=<gini = 0.0
br/>samples = 8
value = [8, 0]
class = G>, fillcolor="#e58139ff"]; 6 -> 10 : 11 [label=<density ≤ 0.997
br/>gini = 0.365
br/>samples = 545
br/>value = [131, 414]
br/>class = o>, fillcolor="#399de5ae"]; 3 -> 11 ; 12 [label=<free sulfur dioxide &le: 19.5
br/>gini = 0.412
br/>samples = 321
br/>value = [93, 228]
class = o>, fillcolor="#399de597"]; 11 -> 12 ; 13 [label=<fixed acidity ≤ 6.95
br/>gini = 0.497
br/>samples = 56
br/>value = [30, 26]
class = 6>, fillcolor="#e5813922"]; 12 -> 13 ; 14 [label=<citric acid ≤ 0.24
br/>gini = 0.444
br/>samples = 27
br/>value = [9, 18]
class = o>, fillcolor="#399de57f"]; $13 \rightarrow 14$; 15 [label=<gini = 0.0
br/>samples = 3
value = [3, 0]
class = 6>, fillcolor="#e58139ff"]; 14 -> 15 ; 16 [label=<free_sulfur_dioxide ≤ 17.5
br/>gini = 0.375
br/>samples = 24
br/>value = [6, 18]
class = o>, fillcolor="#399de5aa"]; $14 \rightarrow 16$; 17 [label=<free sulfur dioxide ≤ 12.0
sini = 0.266
br/>samples = 19
br/>value = [3, 16]
class = o>, fillcolor="#399de5cf"]; 16 -> 17 ; 18 [label=<fixed acidity ≤ 5.6
br/>gini = 0.5
br/>samples = 6
br/>value = [3, 3]
class = G>, fillcolor="#e5813900"]; 17 -> 18 ; 19 [label=<gini = 0.0
samples = 1
value = [1, 0]
class = 6>, fillcolor="#e58139ff"] ; 18 -> 19 ; 20 [label=<volatile acidity &le: 0.195
br/>gini = 0.48
br/>samples = 5
value = [2, 3]
class = o>, fillcolor="#399de555"]: 18 -> 20 ; 21 [label=<gini = 0.0
samples = 2
value = [0, 2]
class = o>, fillcolor="#399de5ff"] ; 20 -> 21 ; 22 [label=<fixed acidity &le: 6.85
br/>gini = 0.444
br/>samples = 3
br/>value = [2, 1]
br/>class = G>, fillcolor="#e581397f"]: 20 -> 22 : 23 [label=<gini = 0.0
br/>samples = 2
value = [2, 0]
class = G>, fillcolor="#e58139ff"]; 22 -> 23 ;

Conclusion & Discussion

Conclusion

- Several clustering algorithm works well with the dataset
- Bad performance with regression
 - Possibly need more work in determining which features to keep
- Combat subjective result from wine taster when we can use Data Science to answer the question

Discussion

- If good regression model can be found then a Python based application can be build for interactivity
- Need to understand dataset well and find optimal parameters

Modeling Wine Quality

- ★ Ran several algorithm on multiple linear regression
 - Ordinary Least Square (Linear Regression)
 - Ridge Regression
 - Lasso Regression
 - Stochastic Gradient Descent
 - Forward Selection
 - Decision Tree Regression
- ★ Created several classification models to predict whether the quality of a given wine is good or bad
 - K-Nearest Neighbors
 - **SVM**
 - Decision Tree Classification
 - Used PCA for dimensionality reduction

Mario Wijaya Georgia Tech